Sex differences, alcohol dehydrogenase, acetaldehyde burst, and aversion to ethanol in the rat: a systems perspective.
نویسندگان
چکیده
Individuals who carry the most active alcohol dehydrogenase (ADH) isoforms are protected against alcoholism. This work addresses the mechanism by which a high ADH activity leads to low ethanol intake in animals. Male and female ethanol drinker rats (UChB) were allowed access to 10% ethanol for 1 h. Females showed 70% higher hepatic ADH activity and displayed 60% lower voluntary ethanol intake than males. Following ethanol administration (1 g/kg ip), females generated a transient blood acetaldehyde increase ("burst") with levels that were 2.5-fold greater than in males (P < 0.02). Castration of males led to 1) an increased ADH activity (+50%, P < 0.001), 2) the appearance of an acetaldehyde burst (3- to 4-fold vs. sham), and 3) a reduction of voluntary ethanol intake comparable with that of naïve females. The ADH inhibitor 4-methylpyrazole blocked the appearance of arterial acetaldehyde and increased ethanol intake. Since the release of NADH from the ADH.NADH complex constitutes the rate-limiting step of ADH (but not of ALDH2) activity, endogenous NADH oxidizing substrates present at the time of ethanol intake may contribute to the acetaldehyde burst. Sodium pyruvate given at the time of ethanol administration led to an abrupt acetaldehyde burst and a greatly reduced voluntary ethanol intake. Overall, a transient surge of arterial acetaldehyde occurs upon ethanol administration due to 1) high ADH levels and 2) available metabolites that can oxidize hepatic NADH. The acetaldehyde burst is strongly associated with a marked reduction in ethanol intake.
منابع مشابه
Tryptophan in Alcoholism Treatment I: Kynurenine Metabolites Inhibit the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevate Blood Acetaldehyde Concentration and Induce Aversion to Alcohol
AIMS The aims were to provide proofs of mechanism and principle by establishing the ability of kynurenine metabolites to inhibit the liver mitochondrial low K(m) aldehyde dehydrogenase (ALDH) activity after administration and in vivo, and to induce aversion to alcohol. METHODS Kynurenic acid (KA), 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) were administered to normal mal...
متن کاملTryptophan in Alcoholism Treatment II: Inhibition of the Rat Liver Mitochondrial Low Km Aldehyde Dehydrogenase Activity, Elevation of Blood Acetaldehyde Concentration and Induction of Aversion to Alcohol by Combined Administration of Tryptophan and Benserazide
AIMS The aims were to provide proofs of mechanism and principle by establishing the ability of the amino acid L-tryptophan (Trp) combined with the kynureninase inhibitor benserazide (BSZ) to inhibit the liver mitochondrial low K(m) aldehyde dehydrogenase (ALDH) activity after administration and in vivo and to induce aversion to alcohol. METHODS Trp, BSZ or both were administered to male Wista...
متن کاملUChA and UChB rats
Ethanol non-drinker (UChA) and drinker (UChB) rat lines derived from an original Wistar colony have been selectively bred at the University of Chile for over 70 generations. Two main differences between these lines are clear. (1) Drinker rats display a markedly faster acute tolerance than non-drinker rats. In F 2 UChA × UChB rats (in which all genes are ‘shuffled’), a high acute tolerance of th...
متن کاملEliciting the Low-Activity Aldehyde Dehydrogenase Asian Phenotype by an Antisense Mechanism Results in an Aversion to Ethanol
A mutation in the gene encoding for the liver mitochondrial aldehyde dehydrogenase (ALDH2-2), present in some Asian populations, lowers or abolishes the activity of this enzyme and results in elevations in blood acetaldehyde upon ethanol consumption, a phenotype that greatly protects against alcohol abuse and alcoholism. We have determined whether the administration of antisense phosphorothioat...
متن کاملGene specific modifications unravel ethanol and acetaldehyde actions
Ethanol is metabolized into acetaldehyde mainly by the action of alcohol dehydrogenase in the liver, while mainly by the action of catalase in the brain. Aldehyde dehydrogenase-2 metabolizes acetaldehyde into acetate in both organs. Gene specific modifications reviewed here show that an increased liver generation of acetaldehyde (by transduction of a gene coding for a high-activity liver alcoho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 293 2 شماره
صفحات -
تاریخ انتشار 2007